Testing gravity with the two-body problem

ADRIEN KUNTZ

30/03/2021

Istituto Nazionale di Fisica Nucleare

ABOUT MYSELF

• 2017-2020: PhD in CPT Marseille, with Federico Piazza

Theme : Tests of gravity with GWs

• 2020-present: Postdoc at Scuola Normale Superiore (Pisa), with Enrico Trincherini

Theme: Effective field theories in gravity (with application to the relativistic three-body problem)

- Orbit circularization
- 3-body GW
- Exoplanets
- PBH formation

2

THE GREEKS...

JOHANNES KEPLER'S UPHILL BATTLE

KEPLER...

EINSTEIN'S GENERAL RELATIVITY (GR)

Post-Newtonian force

$$\mathbf{F} = -\frac{Gm_1m_2}{r^3}\mathbf{r}\left[1 + \mathcal{O}\left(\frac{v^2}{c^2}\right)\right]$$

EINSTEIN'S GENERAL RELATIVITY (GR)

Post-Newtonian force

$$\mathbf{F} = -\frac{Gm_1m_2}{r^3}\mathbf{r}\left[1 + \mathcal{O}\left(\frac{v^2}{c^2}\right)\right]$$

Gravitational Waves (GW)

$$P = \frac{G}{5} \left\langle \ddot{Q}^{kl} \ddot{Q}_{kl} \right\rangle$$

Problematic

What can we learn from gravity using two-body trajectories ? Where should we look for new physics, and which parameters control possible deviations from GR ?

 \Rightarrow EFFECTIVE FIELD THEORY (EFT) ideas are crucial

Problematic

What can we learn from gravity using two-body trajectories ? Where should we look for new physics, and which parameters control possible deviations from GR ?

\Rightarrow EFFECTIVE FIELD THEORY (EFT) ideas are crucial

A simple example : Eddington parameters

$$g_{\mu\nu} dx^{\mu} dx^{\nu} \simeq -\left(1 - \frac{2GM}{r} + \frac{\beta}{r^2} \frac{2G^2 M^2}{r^2} + \dots\right) dt^2 + \left(1 + \frac{2GM}{r} + \dots\right) (dx^2 + dy^2 + dz^2) .$$

Today's constraints : $|\gamma - 1| \leq 2 \times 10^{-5}$ $|\beta - 1| \leq 8 \times 10^{-5}$

WHY MODIFY GRAVITY ?

COSMOLOGICAL CONSTANT PROBLEM

HUBBLE TENSION

SCALAR-TENSOR THEORIES:

 $g_{\mu\nu}$ + φ

ST THEORIES AND COSMOLOGY A second EFT example: EFT OF INFLATION/DARK ENERGY

A unifying and effective description of cosmological perturbations

$$\phi(t,\vec{x}) \to \phi_0(t) \quad (\delta\phi=0) \qquad -\frac{1}{2}\partial\phi^2 \to -\frac{1}{2}\dot{\phi}_0^2(t) \ g^{00}$$

Creminelli et al. '06 Cheung et al. '07 Gubitosi et al. '12

ST THEORIES AND COSMOLOGY

The Action

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

Dictionary between theories (Quintessence, Brans-Dicke, Galileons...) and effective parameters (measured in observations):

$$w(t)$$
, $\mu(t) = \frac{\dot{f}}{f}$

ST THEORIES AND COSMOLOGY

GW170817: GWs propagate at the speed of light $|c_T - c| \leq 10^{-15}$

GW observations can be extremely powerful probes of fundamental physics!

TESTING GR WITH GW OBSERVATIONS

Interferometers give access to the phase of GWs

$$\tilde{h}(f) = A(f)e^{i\Psi(f)}$$

$$\Psi(f) = 2\pi ft_0 + \phi_0 + \sum_k \phi_{\rm PN}^k (\pi \mathcal{M}f)^{(k-5)/3}$$

Parametrized Post-Einsteinian (ppE): vary the PN parameters ϕ_{PN}^k

N. Yunes, F. Pretorius 09

1. The two-body problem in GR : An EFT approach

1. The two-body problem in GR: an $\ensuremath{\mathsf{EFT}}$ approach

2. The two-body problem in Scalar-Tensor theories

- 1. The two-body problem in GR: an EFT approach
- 2. The two-body problem in Scalar-Tensor theories
- 3. Two-body problem and screening mechanisms

- 1. The two-body problem in GR: an EFT approach
- 2. The two-body problem in Scalar-Tensor theories
- 3. Two-body problem and screening mechanisms
- 4. EXTREME MASS RATIO INSPIRALS AND SCALAR HAIR

Basic ingredient of GR : the METRIC $g_{\mu\nu}$

Action principle (in vacuum):
$$S_{\rm EH} = \frac{M_P^2}{2} \int d^4x \sqrt{-g} R \implies G_{\mu\nu} = 0$$

Model black holes/neutron stars with POINT-PARTICLES

$$S_{\rm pp,A} = -m_A \int d\tau_A = -m_A \int dt \sqrt{-g_{\mu\nu}} \frac{dx_A^{\mu}}{dt} \frac{dx_A^{\nu}}{dt}$$

The two-body problem in GR

FINITE-SIZE EFFECTS

$$-m_A \int d\tau_A \qquad \Longrightarrow \qquad \frac{d^2 x_A^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx_A^{\nu}}{d\tau} \frac{dx_A^{\rho}}{d\tau} = 0$$

Finite-size effects can be added through non-minimal operators:

$$\mathcal{O}_1 = c_R \int \mathrm{d}\tau_A R \qquad \qquad \mathcal{O}_2 = c_V \int \mathrm{d}\tau_A R_{\mu\nu} v^{\mu} v^{\nu}$$

$$\Rightarrow \qquad \frac{d^2 x_A^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho} \frac{d x_A^{\nu}}{d\tau} \frac{d x_A^{\rho}}{d\tau} \neq 0$$

These are quite high-order effects

The two-body problem in GR

EFT approach : use field theory tools

Goldberger and Rothstein 06 Porto 06 + many others...

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$
$$\mathcal{O}(v^2) = \mathcal{O}\left(\frac{GM}{r}\right) \ll 1$$

EFT approach : use field theory tools

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \implies S = S^{(2)} + S_{int}$$
GREEN FUNCTION OF PROPAGATOR: from $\int d^4x \sqrt{-gR}$

$$S^{(2)} = -\frac{1}{8} \int d^4x \left[-\frac{1}{2} (\partial_{\mu} h^{\alpha}_{\alpha})^2 + (\partial_{\mu} h_{\nu\rho})^2 \right]$$
INTERACTION VERTEX: from $-m_A \int dt \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}_A}{dt} \frac{dx^{\nu}_A}{dt}$

$$S_{int} \supset m \int dt h_{00}, \qquad m \int dt h_{00}^2, \qquad \int d^4x \, \partial^2 h^3$$

The two-body problem in GR

The two-body dynamics is encoded in the EFFECTIVE ACTION :

 $e^{iS_{\text{eff}}[\mathbf{x}_1(t),\mathbf{x}_2(t)]} = \mathcal{D}h_{\mu\nu}e^{iS[\mathbf{x}_1(t),\mathbf{x}_2(t),h_{\mu\nu}]}$

REAL PART: CONSERVATIVE

MAGINARY PART: DISSIPATIVE

The two-body dynamics is encoded in the EFFECTIVE ACTION :

The two-body dynamics is encoded in the EFFECTIVE ACTION :

A RESUMMATION TECHNIQUE

A. Kuntz (PRD) 20

In the 1PN potential enter two types of vertex

A RESUMMATION TECHNIQUE

A. Kuntz (PRD) 20

In the 1PN potential enter two types of vertex

The first one can be resummed exactly !

$$S_{\text{pp,A}} = -m_A \int dt \sqrt{-g_{\mu\nu} v_A^{\mu} v_A^{\nu}} \qquad \Leftrightarrow \qquad S_{\text{pp,A}} = -\frac{m_A}{2} \int dt \left[e_A - \frac{g_{\mu\nu} v_A^{\mu} v_A^{\nu}}{e_A} \right]$$

with $e_A = \sqrt{-g_{\mu\nu} v_A^{\mu} v_A^{\nu}}$
... The worldline couplings are now LINEAR

The two-body problem in GR

1. The two-body problem in GR: an $\ensuremath{\mathsf{EFT}}$ approach

2. The two-body problem in Scalar-Tensor theories

$MODIFYING \ GR: SCALAR-TENSOR \ THEORIES$

GR action:
$$S = \frac{M_P^2}{2} \int d^4x \sqrt{-g}R + S_m[g_{\mu\nu}, \psi_i]$$

A simple alternative to GR: $g_{\mu\nu}$ + ϕ

$$S_{\varphi} = -\frac{1}{2} \int d^4x \sqrt{-g} g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi$$

Coupling of φ with matter, compatible with causality and equivalence principle:

Scalar-tensor theories

CONFORMAL COUPLING

Focus on $\tilde{g}_{\mu\nu} = A(\varphi)g_{\mu\nu}$

A. Kuntz, F. Piazza, F. Vernizzi (JCAP) 19

$$S_{\rm pp} = -\int d\tau_A \ m_A(\varphi) = m_A \int d\tau \left(-1 + \frac{\alpha_A}{M_P} + \frac{\delta_A}{M_P} \left(\frac{\varphi}{M_P} \right)^2 + \dots \right)$$

DISSIPATIVE

Scalar-tensor theories

CONFORMAL COUPLING

Focus on $\tilde{g}_{\mu\nu} = A(\varphi)g_{\mu\nu}$

A. Kuntz, F. Piazza, F. Vernizzi (JCAP) 19

$$S_{\rm pp} = -\int d\tau_A \ m_A(\varphi) = m_A \int d\tau \left(-1 + \frac{\varphi}{M_P} + \frac{\delta_A}{M_P} \left(\frac{\varphi}{M_P} \right)^2 + \dots \right)$$

DISSIPATIVE

CONFORMAL COUPLING

Focus on $\tilde{g}_{\mu\nu} = A(\varphi)g_{\mu\nu}$

A. Kuntz, F. Piazza, F. Vernizzi (JCAP) 19

$$S_{\rm pp} = -\int d\tau_A \ m_A(\varphi) = m_A \int d\tau \left(-1 + \frac{\alpha_A}{M_P} + \frac{\delta_A}{M_P} \left(\frac{\varphi}{M_P} \right)^2 + \dots \right)$$

CHARGE RENORMALISATION

A. Kuntz, F. Piazza, F. Vernizzi (JCAP) 19

$$S_{\text{int}} = -\int d\tau_A \ m_A(\varphi) = m_A \int d\tau \left(-1 + \alpha \frac{\varphi}{M_P} + \delta \left(\frac{\varphi}{M_P} \right)^2 + \dots \right)$$

Scalar-Tensor theories

CONCLUSION PART 2

Main aspects of scalar-tensor theories, with respect to $\ensuremath{\mathsf{GR}}$:

- Bending of light and perihelion is different
- Dipolar radiation
- Violations of the strong equivalence principle

CONCLUSION PART 2

Main aspects of scalar-tensor theories, with respect to ${\sf GR}$:

- Bending of light and perihelion is different
- Dipolar radiation
- Violations of the strong equivalence principle

Experimental tests are very stringent: the scalar coupling is small

 $\alpha \leq 10^{-2}$

A screening mechanism could explain such a small value

How to formulate the two-body problem with a screening Mechanism?

- 1. The two-body problem in GR: an EFT approach
- 2. The two-body problem in Scalar-Tensor theories
- 3. Two-body problem and screening mechanisms

K-Mouflage screening

$$S = \int d^4x \left[-\frac{(\partial \varphi)^2}{2} - \frac{1}{4\Lambda^4} (\partial \varphi)^4 + \frac{\varphi T}{M_P} \right]$$

For cosmological applications

 $\Lambda^2 \sim HM_P$

Equation of motion around a static source:

$$\varphi_0' + \frac{\left(\varphi_0'\right)^3}{\Lambda^4} = \frac{M}{4\pi M_P r^2}$$

K-Mouflage screening

$$S = \int d^4x \left[-\frac{(\partial \varphi)^2}{2} - \frac{1}{4\Lambda^4} (\partial \varphi)^4 + \frac{\varphi T}{M_P} \right]$$

For cosmological applications

 $\Lambda^2 \sim HM_P$

Equation of motion around a static source:

K-Mouflage screening

$$S = \int d^4x \left[-\frac{(\partial \varphi)^2}{2} - \frac{1}{4\Lambda^4} (\partial \varphi)^4 + \frac{\varphi T}{M_P} \right]$$

For cosmological applications

 $\Lambda^2 \sim HM_P$

Equation of motion around a static source:

$$\varphi_0' + \frac{\left(\varphi_0'\right)^3}{\Lambda^4} = \frac{M}{4\pi M_P r^2}$$

TWO-BODY PROBLEM

PERTURBATIVE EXPANSION BREAKS DOWN...

$$e^{iS_{\text{eff}}[\mathbf{x}_1,\mathbf{x}_2]} = \int \mathscr{D}[\varphi] e^{iS[\mathbf{x}_1,\mathbf{x}_2,\varphi]}$$

TWO-BODY PROBLEM A. Kuntz (PRD) 19

A NUMERICAL SOLUTION:

$$\eta = \frac{m_1}{m_1 + m_2}$$

Screening mechanisms

A. Kuntz (PRD) 19

$$E = \mu \ b(\eta) \ \varphi_0(r)$$

 $\Rightarrow \vec{a} = b(\eta) \vec{\nabla} \varphi_0(r)$

$$E = \mu \ b(\eta) \ \varphi_0(r)$$

$$\Rightarrow \vec{a} = b(\eta) \, \vec{\nabla} \, \varphi_0(r)$$

$$\delta r_{EM} \simeq 3 \times 10^{12} \left| \eta_{SE} \left(\frac{r}{r_*} \right)^{4/3} \right| \text{ cm}$$

This gives a constraint :

$$\eta_{SE} \left(\frac{r}{r_*}\right)^{4/3} \lesssim 10^{-13}$$

Since $\eta_{\rm SE} \simeq 10^{-6}$, the perihelion constraint is better:

$$\left(\frac{r}{r_*}\right)^{4/3} \lesssim 10^{-11}$$

Screening mechanisms

CONCLUSIONS PART 3

- Screening mechanisms naturally recover GR inside the solar system
- They lead to violations of the Equivalence Principle

There remains an important question:

How is the (two-body) motion of black holes modified in scalar-tensor theories ?

- 1. The two-body problem in GR: an EFT approach
- 2. The two-body problem in Scalar-Tensor theories
- 3. Two-body problem and screening mechanisms
- 4. EXTREME MASS RATIO INSPIRALS AND SCALAR HAIR

TESTING GR WITH GW OBSERVATIONS

Interferometers give access to the phase of GWs

$$\tilde{h}(f) = A(f)e^{i\Psi(f)}$$

$$\Psi(f) = 2\pi ft_0 + \phi_0 + \sum_k \phi_{\rm PN}^k (\pi \mathcal{M}f)^{(k-5)/3}$$

Parametrized Post-Einsteinian (ppE): vary the PN parameters ϕ_{PN}^k

N. Yunes, F. Pretorius 09

EMRI & scalar hair

TESTING GR WITH GW OBSERVATIONS

Main drawbacks of this analysis:

• Too many free parameters

- Neglects correlations between different PN coefficients
- It's a lot of work to translate these values into constraints on fundamental physics parameters !

An EFT formalism will address all of these three points

Let's consider theories with one supplementary non-GR parameter :

- Scalar charge $q \Leftrightarrow \phi$
- Fundamental force
- Dark matter profile
- Superradiant cloud

THE NO-HAIR THEOREM

In GR, BH are very simple objects!

VS

A ton of complicated physics (composition, EoS...)

This can be generalised to modified gravity:

(also valid for more complicated Lagrangians)

EMRI & scalar hair

THE NO-HAIR THEOREM

However, it is easy to circumvent the assumptions of the theorem

	I Jacobson '99	II Babichev Esposito-Farèse '13	III Sotiriou et al. '14
Hair type	Environmental	Environmental	Secondary
Lagrangian	$L_1 = \frac{M_P^2}{2}R - \frac{1}{2}(\partial\varphi)^2$	$L = L_1 - \frac{1}{2\Lambda^3} (\partial \varphi)^2 \Box \varphi$	$L = L_1 + \bar{\alpha}\phi \left(R_{\mu\nu\rho\lambda}R^{\mu\nu\rho\lambda}\right)$ $-4R_{\mu\nu}R^{\mu\nu} + R^2$
Field	$\varphi(t, r) = qt + \beta_{\text{eff}} \varphi_0(r)$	$\varphi(t,r) = qt + \beta_{\rm eff} \varphi_0(r)$	$\varphi(r) = \frac{Q}{r} + \mathcal{O}\left(\frac{1}{r^2}\right)$

The GW signals would then be quite different than in GR! EMRI & scalar hair 49

HAIR EXAMPLE II: CUBIC GALILEON

P. Brax, L. Heisenberg, A. Kuntz (JCAP) 20

 $K_t = 3\left(\frac{r_*}{r}\right)^{3/2}$ $K_r = 4\left(\frac{r_*}{r}\right)^{3/2}$

 $K_{\Omega} = \left(\frac{r_*}{r}\right)^{3/2}$

$$\varphi = qt + \bar{\varphi}(r) + \delta\varphi$$
$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$$

.

QUADRATIC ACTION for fluctuations:

$$S = \int d^4x \frac{1}{2} \left[K_t (\partial_t \delta \varphi)^2 - K_r (\partial_r \delta \varphi)^2 - K_\Omega (\partial_\Omega \delta \varphi)^2 \right] + \frac{\beta_{\text{eff}}}{M_P} \delta \varphi T$$

Solve for the field using Green's function

$$\Delta \Phi \simeq 3.5 \times 10^{-7} \beta_{\rm eff}^{3/2} \left(\frac{\Lambda}{10^{-12} {\rm eV}}\right)^{3/2} \left(\frac{m_1}{50 M_{\odot}}\right)^{-1} \left(\frac{m_0}{10^6 M_{\odot}}\right)^{-3/2} \left(\frac{\Omega_{\rm in}}{10^{-3} {\rm Hz}}\right)^{-21/6}$$

EMRI & scalar hair

A SYSTEMATIC APPROACH

UNITARY GAUGE: $\varphi(t, x) \rightarrow \overline{\varphi}(r)$ i.e $\delta \varphi = 0$

A SYSTEMATIC APPROACH

 $\int_{0}^{V \ll 1} \varphi = \bar{\varphi}(r) + \delta\varphi$ $g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$

UNITARY GAUGE: $\varphi(t, x) \rightarrow \overline{\varphi}(r)$ i.e $\delta \varphi = 0$

EFFECTIVE ACTION :
$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} M_1^2(r) R - \Lambda(r) - f(r) g^{rr} - \alpha(r) \overline{K}^{\mu}_{\ \nu} K^{\nu}_{\ \mu} \right] + S^{(2)}$$
G. Francjolini et al. 19

- Λ, f and α uniquely determined by the background $\bar{g}_{\mu\nu}$
- M_1^2 removable by a conformal transformation

 $g_{\mu\nu}^{(E)}(x) = g_{\mu\nu}^{(J)}(x)M_1^2(r)$

$$S_{\rm pp} = -\int dt \,\mu \sqrt{-\bar{g}_{\mu\nu}} v^{\mu} v^{\nu} \rightarrow -\int dt \,\mu(r) \sqrt{-\bar{g}_{\mu\nu}} v^{\mu} v^{\nu}$$

EMRI & scalar hair

THE METRIC $g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$

Background:

$$\bar{g}_{\mu\nu} dx^{\mu} dx^{\nu} = -a^2(r) dt^2 + \frac{dr^2}{b^2(r)} + c^2(r) \left(d\theta^2 + \sin^2\theta d\phi^2 \right)$$

E.g. for Gauss-Bonnet:

 $a^{2}(r) = 1 - \frac{2M}{r} + \frac{MQ^{2}}{6r^{3}} + \mathcal{O}(r^{-4})$ $b^{2}(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{2r^{2}} + \mathcal{O}(r^{-3})$ $c^{2}(r) = r^{2}$ (gauge choice)

THE METRIC $g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$ $\bar{g}_{\mu\nu} dx^{\mu} dx^{\nu} = -a^2(r) dt^2 + \frac{dr^2}{b^2(r)} + c^2(r) (d\theta^2 + \sin^2\theta d\phi^2)$ E.g. for Gauss-Bonnet:

 $a^{2}(r) = 1 - \frac{2M}{r} + \frac{MQ^{2}}{6r^{3}} + \mathcal{O}(r^{-4})$ $b^{2}(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{2r^{2}} + \mathcal{O}(r^{-3})$ $c^{2}(r) = r^{2}$ (gauge choice)

Perturbations:

Background:

 $\delta g_{\mu\nu}$ transforms under $(i, j) = (\theta, \phi)$ diffs and under PARITY:

$$\delta g_{\mu\nu}^{\rm odd} \Leftrightarrow \Psi$$

THE ODD SECTOR

A. Kuntz, R. Penco, F. Piazza (JCAP) 20

GENERALIZED RW EQUATION

$$\frac{d^2\Psi}{d\tilde{r}^2} + (\omega^2 + V(\tilde{r}))\Psi = S$$

$$\frac{d\tilde{r}}{dr} = 1 + (\dots)\frac{M}{r} + \mathcal{O}\left(\frac{M}{r}\right)^2 \qquad \text{GENERALIZED TORTOISE COORDINATE}$$

$$V(\tilde{r}(r)) = -\frac{1}{r^2} \left(1 - \frac{2M}{r} \right) \left(l(l+1) - (\dots) \frac{M}{r} + \mathcal{O}\left(\frac{M}{r}\right)^2 \right) \quad \text{GENERALIZED RW POTENTIAL}$$

THE ODD SECTOR

A. Kuntz, R. Penco, F. Piazza (JCAP) 20

GENERALIZED RW EQUATION

$$\frac{d^2\Psi}{d\tilde{r}^2} + (\omega^2 + V(\tilde{r}))\Psi = S$$

$$\frac{d\tilde{r}}{dr} = 1 + (\dots)\frac{M}{r} + \mathcal{O}\left(\frac{M}{r}\right)^2 \qquad \text{GENERALIZED TORTOISE COORDINATE}$$

$$V(\tilde{r}(r)) = -\frac{1}{r^2} \left(1 - \frac{2M}{r} \right) \left(l(l+1) - (\dots) \frac{M}{r} + \mathcal{O}\left(\frac{M}{r}\right)^2 \right) \quad \text{GENERALIZED RW POTENTIAL}$$

Solution to the RW equation:

Poisson 93 Sasaki 94

$$\Psi(r) = \Psi_0(r) + (M\omega)\Psi_1(r) + (M\omega)^2\Psi_2(r) + \dots$$
$$P \propto \sum_{l,m} \left|\frac{d\Psi}{dt}\right|^2$$

EMRI & scalar hair

DISSIPATED POWER

A. Kuntz, R. Penco, F. Piazza (JCAP) 20

DISSIPATED POWER

A. Kuntz, R. Penco, F. Piazza (JCAP) 20

Our approach bridges the gap between ppE and theory:

MODELED SEARCH WITH ADDITIONAL NON-GR COEFFICIENTS !

The even sector now needs to be done...

EMRI & scalar hair

Outlook

- We have investigated on the TWO-BODY PROBLEM in several types of SCALAR-TENSOR THEORIES, often adopting an EFFECTIVE FIELD THEORY viewpoint.
- GRAVITATIONAL WAVES astronomy still in infancy. Interesting physics ahead !
- EFFECTIVE FIELD THEORIES are fantastic tools to compare theory & experiment
- THE OLDEST ACADEMIC PROBLEM OF PHYSICS IS STILL A SOURCE OF INSPIRATION!

Thank you !