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Abstract

The Unruh effect is the temperature feeled by an accelerating observer in Minkowski space. We will
derive as simply as possible how this temperature emerges.

An accelerating observer in 2D Minkowski space moves along an hyperbola represented in Figure 1 (for
different accelerations).

This hyperbola is parametrized by : {
t(s) = 1

a sinh(sa)

x(s) = 1
a cosh(sa)

(1)

The acceleration of this body is aαaα = a2. We can switch to coordinates adapted to this observer, the
Rindler coordinates : {

t = ez sinh(τ)

x = ez cosh(τ)
(2)

ez parametrizes which hyperbola the observer sit on (we have now normalized the acceleration such that
a = 1). If we denote x± = x ± t, we have x+ = ez+τ and x− = ez−τ . The metric in Rindler coordinates is
conformally equivalent to Minkowski metric :

ds2 = −dt2 + dx2 = e2z(−dτ2 + dz2) (3)

Now consider a quantum massless scalar field in both Minkowski and Rindler coordinates. As usual for
quantum fields in curved space, there is an ambiguity in determining the vacuum of this field. The action
for this field writes :

S =
1

2

∫
d2x
√
−ggµν∂µφ∂νφ (4)

which takes the same form in both coordinates :

x

t

Figure 1: A family of Rindler observers
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S =
1

2

∫
dxdt(−(∂tφ)2 + (∂xφ)2) =

1

2

∫
dzdτ(−(∂τφ)2 + (∂zφ)2) (5)

Let’s now go in Fourier space :

φM (t, k) =

∫
dxeikxφM (t, x) (6)

φR(τ,K) =

∫
dzeiKzφR(τ, z) (7)

I have introduced two different notations to make explicit the distinction between the two different
coordinates systems. These two functions obey the differential equations (obtained from minimizing the
action) :

∂2t φ
M + k2φM = 0 (8)

∂2τφ
R +K2φR = 0 (9)

The solutions of these equations are waves φMcl = αk√
2k
e−ikt + βk√

2k
eikt (resp. φRcl = αK√

2K
e−iKτ + βK√

2K
eiKτ ).

Now, a simple computation shows that to minimize the classical value of the Hamiltonian H = 1
2(

˙̃
φ2cl+k

2φ2cl),
one should take αk = 1 and βk = 0. Let’s show this.

The temporal mean value of the Hamiltonian is 1
2αβk. In addition, we want to write φ̃ as a quantum

field, so it must obey the uncertainty principle. More precisely, if we write φ̃ = φ̃cla+ φ̃∗cla
† and impose that

[φ̃,
˙̃
φ] = i knowing [a, a†] = 1, then the coefficients must obey α2−β2 = 1. The only solution minimizing the

(positive) Hamiltonian is α = 1, β = 0.
We now want to quantize this field. There is an ambuguity in the choice of vacuum because of the two

different coordinate systems :

φR(τ,K) = φRcl(τ,K)aR + φR∗cl (τ,K)a†R , aR |0〉R = 0 (10)

= φMcl (τ,K)aM + φM∗cl (τ,K)a†M , aM |0〉M = 0 (11)

where we have taken the classical value corresponding to the minimum energy α = 1, β = 0.
The question is now : is the Minkowski vacuum in Rindler coordinates really a vacuum ? More pre-

cisely, how many Rindler particles are there in the Minkowski vacuum ? To know this we should calculate
〈0| a†RaR |0〉M M . We will show that this quantity is proportional to 1

eβK−1 which is a bose distribution of
inverse temperature β, showing that this accelerated quantum field feels this Unruh temperature (one can
also do a similar treatment for fermions). In natural units, we will show that β = 2π, corresponding to a
temperature when reintroducing physical constants (and an acceleration a) :

TUnruh =
a~

2πkBc
(12)

Let’s do this job. The first step is to express φMcl (τ,K) in terms of φRcl(τ,K) = e−iKτ√
2K

. Since φMcl (t, x) =∫
dk
2πe
−ikxφMcl (t, k) =

∫
dk

2π
√
2k
e−ik(x−t), one has φMcl (τ, z) =

∫
dk

2π
√
2k
e−ike

z−τ , so that, for a single frequency k
:

φMcl (τ,K) ∝
∫

dzeiKze−ike
z−τ

(u = ike−τez) =

∫ ∞
0

du

u

(
−iu
ke−τ

)iK
e−u

= eK
π
2 eiKτe−ik log kΓ (−iK)

≡ γφR∗cl (τ,K)

(13)
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with γ ∝ eK
π
2 e−ik log kΓ (−iK).

Now we can relate aM and aR using equation 11 :

φR(τ,K) = γφR∗cl (τ,K)aM + γ∗φRcl(τ,K)a†M (14)

from which it follows that aR = γ∗a†M (γ is called a bogoliubov coefficient). So 〈0| a†RaR |0〉M M =

|γ|2 〈0| aMa†M |0〉M M = |γ|2. Using the identity |Γ (−iK) |2 = π
K sinhπK , one can easily derive that :

|γ|2 ∝ 1

e2πK − 1
(15)

which shows the previous result.
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